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Abstract: - This paper presents a double layer genetic algorithm (DLGA) to improve performance of the 

information-constrained parameter estimations. When a simple genetic algorithm (SGA) fails, a DLGA is 

applied to the optimization problem in which the initial condition is missing. In this study, a DLGA is 

specifically designed. The two layers of the SGA serve different purposes. The two optimizations are applied 

separately but sequentially. The first layer determines the average value of a state variable as its derivative is 

zero. The knowledge from the first layer is utilized to guide search in the second layer. The second layer uses 

the obtained average to optimize model parameters. To construct a fitness function for the second layer, the 

relative derivative function of the average is combined into the fitness function of the ordinary least square 

problem as a value control. The result shows that the DLGA has better performance. When missing an initial 

condition, the DLGA provides more consistent numerical values for model parameters. Also, simulation 

produced by DLGA is more reasonable values than those produced by the SGA. 
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1 Introduction 
To study the growth mechanism of algae, ordinary 

differential equations have been proposed and 

utilized 
[1]-[6]

. It leads to optimization problems in 

which model parameters or constants need to be 

estimated. A number of optimization methods are 

available to generate feasible numerical values of 

model constants 
[7]

. However, conventional methods 

often have difficulties with complex or 

undifferentiated problems. If possible, traditional 

optimization algorithms, such as gradient based 

methods or direct search methods 
[8,9]

, have 

limitations of reaching a global optimum. Also, the 

efficiency of these methods depends upon an initial 

point. Unless we know proper initial values, the 

traditional methods are inefficient. 

To overcome these limitations, global 

optimization algorithms have been used. A genetic 

algorithm (GA) is a stochastic global optimization 

algorithm based on the evolutionary process 
[10]

. 

Inspired by biological evolution, GA mimics natural 

selection and sexual reproduction to evolve 

solutions. GAs have been successfully applied to 

estimate constants of various models, for example 

[11]-[13].  

However, their performances have been 

considerably limited by some problems, such as 

premature convergence problems.  

To improve simple genetic algorithm (SGA) 

performance, more heuristic methods that multi 

SGA is implemented has been utilized 
[14]-[20]

. They 

were produced with various purposes and names. 

Chang et al. [14] proposed two layers of SGA, 

named TPSPGA, in order to prevent local optimum 

trap. Not only to prevent premature convergence, 

Crevecoeur et al. [15] applied two layers of SGA to 

reduce computational burden for a complex 

problem. They named their multi-layers of SGA as 

“2LGA”. Other variety names of multi-layers of 

SGA are such as two-phase genetic algorithm 

(TPGA) 
[16]

, double layer genetic algorithm 
[17]

, two-

phase genetic local search algorithm 
[18]

, double 

genetic algorithm (DGA) 
[19]

 and Meta Genetic 

algorithm 
[20]

. Multi-layers of SGA is successfully 

applied to number of problems: multi-model 

functions 
[16]

; path planning 
[17]

; scheduling problem 
[14], [18]-[20]

; electromagnetic optimization 
[15]

 and 

multi-objective problems 
[14]

. 

The uses of the multi layers of SGA are 

objective-dependent. The SGA in the two layers is 

designed purposely. Several frameworks have been 

proposed and developed. Normally, the first layer is 

used as global optimization to narrow the search 

space in the second optimization 
[14,16,18]

. Serving as 

local optimization, the second layer uses this 

promising search area to find an optimum. Namely, 

a set of elite solutions of the first phase is utilized to 

construct the initial population of the second phase 
[17,18]

. Not only narrowing a searching space, the 

multi layers of SGA is applied as a meta-GA for 

choosing a proper set of SGA parameters and 

operators. For this purpose, the function of the first 

SGA is to provide the quasi-best SGA parameter 

vector values for particular instances to the second 

SGA 
[20]

. The multi layers of SGA also were 

designed to work with models in an optimization.  

The multi layers of SGA design is user-oriented 

design. Lin-Yu and Shih-Chieh [18] utilized the 

same genetic algorithm in both layers with different 

initial populations. Jin and Dongyong [17] and 

Barrios et al. [19] designed two SGA with different 

fitness evaluation functions. Representation, fitness, 

crossover operator were designed differently 
[19]

. 

Not only adjusting genetic parameters and 

operators, Crevecoeur et al. [15] used two different 

models in the two layers. Working with time-

demanding task, the multi layers of SGA implement 

two models, computationally demanding fine model 

and approximate model, in the optimization 

procedure 
[15]

. An approximated model, which can 

be meta-model or theory-based model, is generated 

and optimized in the first layer. The model 

adjustment enables acceleration of optimization 

procedure. 

 

 

2 Problem Description 
To study algae growth, models proposed by [2,3] 

are adopted. The model described the evolutions of 

the ambient concentration of limiting nutrient, cell 

quota of limiting nutrient and growth of algae in 

continuous culture. In the proposed model, the three 

state equations are: 

 

  

  
  (    )                     (1) 
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  -                            (2) 

  

  
                                      (3) 

 

where   is the ambient concentration of limiting 

nutrient,   is the cell quota of limiting nutrient,   is 

the cell density,    is the influent concentration of 

limiting nutrient,   is the dilution rate,   is the 

growth rate and   is defined as the net transfer of 

limiting nutrient across an average cell’s membrane 

per unit time. 

In [3], the model is made mathematically 

complete with the specification of two state 

dependent rate function, one for uptake rate and the 

other for growth rate. Therefore uptake rate is 

described by a Michaelis-Menten kinetics as 

 

    (
 

    
)     (4) 

 

where    is the maximum uptake rate and    is the 

half saturation constant for substrate uptake, namely 

the substrate concentration supporting an uptake rate 

one-half the maximum rate. 

Note that the uptake rate of the limiting nutrient 

of the model depends upon the external 

concentration of the limiting nutrient ( ).   
The growth rate is based on a Droop function 

[2]
: 

 

    (  
  

 
)     (5) 

 

where     is the maximum growth rate and    is 

the subsistence quota in which algae do not grow 

under this threshold. 

In this study, the model is applied to describe 

the growth of algae in a batch culture system. 

Therefore, the dilution rate of the continuous culture 

( ) is zero. In addition, this study takes account of 

the influence of the internal nutrient on uptake rate. 

Consequently, uptake rates are affected by external 

nutrients as well as internal nutrients. Uptake rate is 

represented as  

 

    (
  

     
)    (6). 

 

The model used in this study is composed of 

three ordinary differential equations hinging on the 

cell quota approach 
[2,4]

 as follows:   

  

  
    (

  

     
)                  (7) 

  

  
   (
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)                         (8) 

  

  
   (  

  

 
)                               (9) 

 

where S is the ambient concentration of the limiting 

nutrient (m·g·L
-1

), Q is the cell quota of the limiting 

nutrient (dimensionless), X is the cell density (m·g· 

L
-1

),    is the maximum uptake rate (hour
-1

) and    

is its associated half saturation constant (m·g· L
-1

), 

namely the substrate concentration supporting an 

uptake rate one-half the maximum rate,     is the 

maximum growth rate (hour
-1

);    is the 

subsistence quota (dimensionless) in which algae do 

not grow under this threshold. 

In this case, the three differential equations are 

evolution equations specifying how the system will 

evolve with time in which the specified values at 

initial, called the initial conditions, are required for 

solving model. Specifically, initial conditions 

include S, Q and X at time zero. In this study, only 

the data of substrate (S) and Biomass (X) are 

available as reported in [21]. The problem becomes 

a fitting problem of an ordinary differential system 

in which an initial condition of a state variable, Q in 

this case, is missing. The model is fitted to the 

experimental data. Fitting the model by the least 

square method involves solving an initial value 

problem. Normally, without knowing the initial 

condition, a possible value will be assumed. 

Without the initial condition, alternatively, an SGA 

still can be applied. However, when implementing 

an SGA, we found that the SGA failed to 

consistently identify the value of the parameters of 

the missing initial condition problem. 

To improve the performance of an SGA for 

fitting problems without initial conditions, this 

paper designs and proposes a multi layers of SGA to 

solve such a specific problem. 

 

 

3 Simple Genetic Algorithm (SGA) 
Genetic algorithm is an optimization technique that 

was developed by Holland and his colleagues in 

1975. Simple genetic algorithm (SGA) produces 

optimum solutions by mimicking two biological 

mechanisms: natural selection and chromosome 

encoding. In nature, natural selection determines 

which individuals in a population survive or die. 

Through natural selection, living organisms with 
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greater fitness to the environment have a greater 

probability of surviving and reproducing. Organisms 

can evolve by sexual reproduction. Sexual 

reproduction introduces variation into the next 

generation population by a combination of parent 

chromosomes. However, errors can occur naturally 

during replication in the reproduction process, 

resulting in a mutation of offspring whose 

characteristics more or less shift from their parents. 

Both natural selection and sexual reproduction, 

including mutation, allow organisms to evolve as 

generations pass.  

To adapt the process of biological evolution to 

a mathematical problem, candidate solutions have to 

be represented in the form of an array of variables. 

Borrowing a genetic term, the array is called 

“chromosomes”, while each variable is called 

“gene”.  

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1 a flowchart of a simple genetic algorithm (the 

highlighted dash-frame represents the adapted parts 

in a double genetic algorithm) 

 

In an SGA, solutions evolve through three main 

operators: selection, crossover and mutation. The 

algorithm of an SGA is depicted in Fig. 1. Based on 

the ‘Survival of the fittest’ principle, the better 

fitness chromosomes are, the bigger chance to be 

selected to survive they have. It is a bias random 

process. The selection operator selects 

chromosomes from the new offspring according to 

the fitness. The fitness is evaluated by a 

mathematical function, called the fitness function. 

Applying it to the parameter determination problem, 

the fitness function works cooperatively with the 

mathematical model being studied (see Fig. 1). 

Crossover is a vital operator of the SGA process. It 

produces a chromosome by exchanging segments of 

a pair of selected parent chromosomes. It evolves 

new solutions by exploiting the profit material from 

the previous search. Therefore, the proper segments 

of a pair of parent are inherited by the descendants. 

Lastly, mutation introduces variety into populations. 

Mutation serves the crucial role of exploration. 

Without inheritance, mutation produces new 

members by altering the value of genes randomly. 

Consequently, unlike crossover, the offspring is 

different from the parents. Normally, the chance of 

mutation is set small. The SGA mechanism is an 

iterative procedure, and through a number of 

generations, it can evolve an optimal solution. The 

iterative algorithm to evolve a solution for a 

problem on the computer is summarized in Fig. 1. 

 

 

4 Double Level Genetic Algorithm 

(DLGA) 
This study proposes a double layer genetic 

algorithm (DLGA) to information-constrained 

parameter estimation problem. Both two levels 

apply the same SGA. To enable SGA to identify the 

model parameters with a missing initial condition of 

a state variable, a DLGA is proposed as an 

alternative approach. A DLGA is designed to 

empower an SGA to estimate the possible values of 

the parameters. The proposed approach is composed 

of two phases of an SGA. Each layer corresponds to 

different aims. The mathematical model and the 

fitness function of each layer are designed 

differently to serve their intended purposes. For a 

parameter estimation problem, fitting models are 

designed differently in two layers. Firstly, a fitting 

model   is constructed based on theory. The model 

normally composes of a set of differential equations, 

expressed as following:  

 
     (   )                 (10) 

where   is a vector of state variables and   is a 

vector of times. The second fitting model is created 

by approximating the original model. The   model 

is simplified by setting         where    data is 

deficient. Consequently, number of state variables   

 Fitness function 

Mathematical 

model 

Generate initial population 

(Random) 

Evaluate fitness value 

Selection and Reproduction 

Crossover 

Terminated 

Satisfied? Yes 

No 

Mutation 

WSEAS TRANSACTIONS on COMPUTERS

Artorn Nokkaew, Busayamas Pimpunchat, 
Charin Modchang, Somkid Amornsamankul, 
Wannapong Triampo, Darapond Triampo

E-ISSN: 2224-2872 380 Issue 11, Volume 11, November 2012



of the simplified model decreases. The 

approximated model   can be expressed. 

     (   )                              (11) 

where    is a vector of state variables, which is a 

subset of   but   is not equal to  , and   is a vector 

of times.  

To apply DLGA, see Fig. 2, the first layer 

utilizes an SGA to generates a control data by using 

approximated model  . Then, the obtained control 

data will be used as knowledge for second search of 

DLGA in the second layer. The control data, 

constant    in this case, is used to clue the second 

optimization. To do so, the optimization evaluation 

function is adjusted. In the second layer, the 

obtained constant    is added into an optimization 

criterion in form of average deviation function. 

Consequently, a fitness function of the second layer 

composes of ordinary least squares of errors and 

deviation function of mean value of the missing 

state variable. Using new evaluation function, 

parameters of model   are estimated. 

 

 

5  Implementation and Results  
This section presents implementation and 

consequents of DLGA for parameter estimation of 

differential equations when an initial condition is 

missing. The same SGA is applied in two layers. In 

the first layer, approximated model is constructed. 

Cooperating with approximated model, the first 

SGA generates control data. The control data is 

utilized in the second layer. It is combined into 

fitness function to guide search of SGA with 

original model in the second layer.  

 
5.1 The first layer 
The first layer of DLGA serves for identifying the 

state variable constant when a state variable is 

assumed to have no change. The obtained constant 

is defined as an average of the state variable. In the 

first layer, the model, the equation (7)-(9), is 

simplified. Without knowing the proper value of the 

cell quota at time zero, state variable Q is assumed 

to be constant. Namely, the derivative of cell quota 

(Q), (8), is set at zero.  

 
  

  
   (

  

     
)    (  

  

 
)          (12) 

 

   (  
  

 
)    (

  

     
)  

 

 
             (13) 

 

Substitute (13) in (9) 

 

  

  
   (

  

     
)  

 

 
                             (14) 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 interactions between two layers in a DLGA  

 

 

An SGA is applied to estimate the constant Q, 

defined as an overall average of cell quotas. The 

SGA in the first layer uses the fitness function 

expressed in (15).     

                                                                               

(15) 

 

where Dexp is experimental data and Dsim is the data 

obtained from solving differential equations (7) and 

(14). The equation (7) and (14) are fitted with 2 sets 

of data with 10 data points presented in [21]. The 

SGA in the first layer comes up with a consistent 

value of Q constant, 0.063. 

 

 

5.2 The second layer 

The second layer of DLGA serves for identifying 

parameters of original model. To do so, knowledge 

from the first layer is utilized. Second optimization 
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is guided by the constant obtained in the first layer. 

Not only the least square of errors function, the 

constant is used to evaluate the search. It becomes 

multi objective problems. In this study, the multiple 

objectives are scalarized into a single objective. 

Therefore, objective function, the equation (15), is 

adjusted. The deviation function of the average cell 

quota is combined into normal fitness function of 

least squares of errors. The new fitness function is 

obtained as follows: 

 

 

 

                         (16)  

where Dexp is the experimental data, Dsim is the data 

obtained from solving differential equations, 
stGAQ1

is the average cell quota obtained from the first 

layer, 
ndGAQ2

is the average cell quota obtained from 

the current layer and w is the weight of average 

control. In this case, w is set of 10, in order to adjust 

its order. 

 

The results from applying a DLGA are 

presented in Table 1. 

 
Table 1 selected final results using DLGA 

 

 

 

Improvements can be gained by using DLGA. 

Quantitatively, a DLGA improves the optimal 

approach. Fig. 3 plots the final values of the 

obtained parameters. The left column of Fig. 3 plots 

the results from the SGA, while the right column 

shows the results of a DLGA. Except Q(t=0), 

clearly, parameters obtained by the DLGA smoothly 

approaches a certain value as the fitness value drops, 

while smooth behavior can be found for    and    

in the SGA. 

See Fig. 3, plot of Q(t=0) versus the fitness 

value shows a weak correlation. It implies that the 

initial condition of the cell quota does not influence 

approaching an optimum. However, the DLGA 

suggests a consistent initial condition for the cell 

quota (Q), around 0.061. 

Qualitatively, a DLGA provides a reasonable 

cell quota evolution in a batch culture system [22]. 

Theoretically, in a static culture in which algae is 

added to a known amount of medium, algae requires 

a brief adaptation period (lag phase). Then, the 

number of algae increases exponentially (log phase) 

and continues to grow at a maximum rate until 

resources become limiting (transitional phase). 

During the growth of the algae, resources contained 

in each algae decrease, namely the cell quota drops. 

The decline in the cell quota leads to a drop in the 

growth rate until the cell quota reaches its minimum 

value, at which point there can be no further growth 

(stationary phase).   

Cell quota trajectory obtained by a DLGA 

seems more reasonable than an SGA. In addition, it 

also corresponds to the growth curve of algae as 

presented in the upper row of Fig. 4. Cell quota 

obtained by a DLGA show a sharp increase of cell 

quota after the addition of algae to the culture 

medium, see Fig. 4 bottom right. Rapid uptake of 

algae results in increased cell quotas. The growth 

curve presents a slow increase in the amount of 

algae in this period. This behaviour is consistent to 

the lag phase which is a brief adaptation period of 

algae, see Fig. 4 upper right. Contrarily, increase of 

cell quota due to greedy consumption behaviour 

cannot be found in an SGA simulation, see Fig. 4 

bottom left. The curve simulated by the SGA 

sharply and immediately decreases after adding the 

algae to the culture medium. 

.                          

  

Parameter Run 2 Run 3 Run 4 
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Fig. 3 plots of final parameter values obtained versus final fitness values. The left column presents the results 

from an SGA. The right presents the results from a DLGA 

 

Not only is there the lag phase coincidence, a 

sharp decrease of cell quota simulated by the DLGA 

also agrees well with the dramatic growth of algae 

in the log phase. When the growth phase of algae 

population is dominant, cell quotas drop as biomass 

increases. Obtained by a DLGA, the cell quota 

trajectory dramatically decreases from 50 to 150 

hours. The DLGA simulation presents the existence 

of the minimal cell quota for growth (  ). It reaches  

 

stationary phase as growth rate becomes zero when 

the cell quota reaches its subsistent level.  

Contrarily, cell quota curves simulated by SGA 

conflict to growth of biomass. The cell quota 

decreases dramatically from 0-50 hrs. The cell quota 

continues to decrease slowly until the limitation of 

the nutrients is reached. But, the growth of algae 

still continues as the cell quota drops nearly to its 

minimum value. 
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Fig. 4 plots of experimental data and simulated curves of Nitrogen concentration, biomass and cell quota versus 

time obtained from an SGA (left column) and a DLGA (right column) 

 

6  Conclusion 
When an SGA fails, a DLGA is utilized in 

optimization problems where the initial condition is 

missing. A DLGA is designed specifically. The two 

SGA have different aims and are implemented 

separately. The knowledge from the first layer is 

utilized to guide the search in the second layer of the 

DLGA. The knowledge is combined into the fitness 

function of ordinary least square problem to 

evaluate search in the second layer. The DLGA 

improves the performance of the SGA for fitting the 

ordinary differential equation model when the initial 

condition is missing. Numerical values estimated by 

the  DLGA  are  more  consistent.  Also,  simulation 

 

 

 

produced by the DLGA is more reasonable than the 

one produced by the SGA.  
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